September 10: Week 2 Problems

Problem 1 (Putnam 2012)

Let d_1, d_2, \ldots, d_{12} be real numbers in the interval (1, 12). Show that there exist distinct indices i, j, k such that $d_i.d_j, d_k$ are the side lengths of an acute triangle.

Problem 2 (Putnam 2012)

Let S be a class of functions from $[0,\infty)$ to $[0,\infty)$ that satisfies:

- The functions $f_1(x) = e^x 1$ and $f_2(x) = \ln(x+1)$ are in S;
- If f(x) and g(x) are in S, the functions f(x) + g(x) and f(g(x)) are in S;
- If f(x) and g(x) are in S and $f(x) \ge g(x)$ for all $x \ge 0$, then the function f(x) g(x) is in S.

Prove that if f(x) and g(x) are in S, then the function f(x)g(x) is also in S.

Problem 3

- a) If every point in the plane is colored either red, green, or blue, show that either some two points that are a distance of 1 apart have the same color or there is an equilateral triangle of side-length $\sqrt{3}$ that has all vertices of the same color.
- b) If every point in the plane is colored either red, green, or blue, show that some two points that are a distance of 1 apart have the same color.
- c) If every point in the plane is colored either red, yellow, green, or blue, show that some two points are a distance of either 1 or $\sqrt{3}$ apart and have the same color.

(You can try (c) directly, parts (a) and (b) are warm-ups to give you some hints)

Problem 4 (Putnam 2014)

A base 10 over-expansion of a positive integer N is an expression of the form

$$N = d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_0 10^0$$

with $d_k \neq 0$ and $d_i \in \{0, 1, 2, ..., 10\}$ for all *i*. For instance, the integer N = 10 has two base 10 overexpansions: $10 = 10 \cdot 10^0$ and the usual base 10 expansion $10 = 1 \cdot 10^1 + 0 \cdot 10^0$. Which positive integers have a unique base 10 over-expansion?